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ABSTRACT

In this work, we invented the Φ memristor to exhibit the direct flux-charge interaction, in which a wire carrying a controlled
amount of current is strung through a magnetic core, and, simultaneously, sensing the possibly induced voltage by the switched
flux. This work confirms the existence of the ideal memristor postulated almost 50 years ago. In order to study this and its positive/
negative integer-/fraction-order counterparties, the flux-charge relationship (and its approximations), the complete differential
conformal transformation, and the complete triangular periodic table of elementary circuit elements are developed. The ideal Φ
memristor, fractional memristor, mem-inductor/mem-capacitor, and negative memristor are predicted within the context of this
new 3-in-1 memristor physics, and their new synaptic functionalities for a brain-like computer are studied experimentally.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5042281

I. NEW MEMRISTOR PHYSICS

In this article, new memristor physics refers to the
3-in-1 physics for an ideal Φ memristor based on the direct
interaction between the physical magnetic flux and the physi-
cal electric charge. The three components of this physics are
the flux-charge relationship (and its approximations), the com-
plete differential conformal transformation, and the complete
triangular periodic table of elementary circuit elements. It is
new as we are probably the first to design an ideal memristor1

using an actual magnet from a first principle or ab initio. Our
developed complete differential conformal transformation is
new compared with the traditional (integer-order) differential
conformal transformation.2,3 Our proposed complete triangu-
lar periodic table is new compared with Chua’s rectangular
periodic table of circuit elements4 and Wang’s triangular
periodic table of circuit elements.5

A. Introduction

Ideal memristor was postulated by Chua almost 50 years
ago to relate the magnetic flux and the electric charge.1 A

memristor obeys the state-dependent Ohm’s law: v(t) ¼ M(x)i(t),
except that the memristance M(x) is not a constant but
depends on a dynamical state variable x (note dx

dt ¼ i). When
x = q, it becomes an ideal memristor whose memristance is a
function of the charge q.2 In the HP memristor case, M(x) ¼
xRon þ (1� x)Roff , where x physically represents the ratio between
the length of doped region and the total length of the memris-
tor and Ron and Roff represent the minimum and maximum
resistance of the memristor, respectively.6

So far, none of the operating memristors is based on
the direct interaction between the physical flux and charge.
Skeptics expressed their concerns regarding the lack of a flux-
charge interaction. In an attempt to theoretically relate the
magnetic flux to devices based on their observation that Chua’s
equations lack material device properties and Strukov’s phe-
nomenological model lacks a magnetic flux term, a “virtual”
magnetic flux can be calculated as the flux arising from the
ions by solving the equations of the missing magnetic flux.7

However, critics still argued “The Missing Memristor has Not
been Found” (the title of their 2015 paper) in the sense that
a real memristor device should be grounded in fundamental
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symmetries of basic physics, here electro-magnetism, and
“ideal/real/perfect/…memristor” needs magnetism.8,9

Before the invention of such a real memristor with the
direct interaction between the physical flux “f” and the phys-
ical charge “q,” it is popular to define “f” and “q” in a purely
mathematical way without giving “f” and “q” any physical
interpretations.2 For example, “f” was defined as the time
integral of the voltage or the flux linkage. It is worth mention-
ing that, for the case of memristor, the electric field is not as
negligible as for the case of inductance, so even treating the
flux linkage as the equivalence of the magnetic flux mathe-
matically is not true.10

On the other hand, we do not have any choice/way/
method to know what “f” is physically and how “f” and “q”
interact physically with each other. For example, Chua had to
imagine a physically non-existent memristor with a flux-charge
relationship w ¼ 1

3 q
3 þ q in his “Resistance switching memories

are memristors” tutorial.2 Although w ¼ 1
3 q

3 þ q is probably the
simplest polynomial function satisfying Chua’s three criteria for
the ideal memristor [(1) Nonlinear; (2) Continuously differ-
entiable; and (3) Monotonically increasing],1 it is purely ficti-
tious (For convenience, it is also odd-symmetric and has a
non-zero slope while crossing the origin.) without any
material and physical basis. As can be seen later in Sec. I C,
this “fictitious” flux-charge relationship will lead to a
number of “un-natural” results, which demonstrates the
importance of introducing a “real-world” memristor.

We strongly believe that, in analogy to the real resistor
that interacts directly the physical voltage and current, the real
capacitor that interacts directly the physical voltage and
charge, and the real inductor that interacts directly the physi-
cal current and flux, the world’s first real memristor that inter-
acts directly the physical flux and charge is still highly in
demands in terms of understanding the real memristor physics
and using the memristor as Chua’s fourth element to seam-
lessly, symmetrically fill the gap of the basic circuit element
table that has already included the (physical) resistor, capaci-
tor, and inductor.4

In our opinion, a “real” physical model is always associ-
ated with an “ideal” condition rather than a “non-ideal” one.
Historically, there was a shift from Aristotle’s theory of gravity
(a bowling ball falls faster than a feather in air, which is a “non-
ideal” condition) to Galileo’s theory of gravity (objects fall with
the same acceleration in vacuum, which is an “ideal” condi-
tion). The shift from a non-flux-charge paradigm to a flux-
charge one in the memristor physics may be somewhat similar
to the above.

This article is organized as follows: in Sec. I, we will
produce a 3-in-1 physical model: the flux-charge relationship
based on the LLG (Landau–Lifshitz–Gilbert) equation11,12 for
an ideal Φ memristor, the complete differential conformal
transformation, and the complete triangular periodic table of
elementary circuit elements; in Sec. II, the Φ memristor will
be experimented; in Sec. III, fractional memristor with the
fractional flux-charge interaction13 will be introduced based
on the fractional calculous14,15 and the STT (Spin-Torque
Transfer) memristor16,17 will be studied as an example; in Sec. IV,

mem-inductor and mem-capacitor will be introduced within
the context of the Adaptive Neuromorphic Architecture (ANA);18

and in Sec. V, negative memristor will be predicted within
the context of a negative triangular table and its peculiar
features associated with “Local Activity” (that was originally
defined in the nonlinear electronic circuits theory by
explaining the emergence of complex patterns at the edge
of chaos and can be generalized in physics, chemistry,
biology, and brain research)19 will be investigated. Out of the
above four types of circuit elements with memory (namely,
ideal Φ memristor, fractional memristor, mem-inductor/
mem-capacitor, and negative memristor), the middle two
have already been reported elsewhere by us13,18 but are still
briefly summarized and listed in this article for the history
and information integrity. Section I (new memristor
physics), Sec. II (Φ memristor), and Sec. V (negative memris-
tor) represent the original research, which have never been
published elsewhere.

B. Φ Memristor

We design an ideal Φ memristor to physically exhibit the
direct flux-charge interaction, in which a conductor carrying
a controlled amount of current is in close proximity to a
magnetic lump and, simultaneously, sensing the possibly
induced voltage by the switched flux. As shown in Fig. 1, the
Oersted field generated by the current i rotates the magne-
tization M inside the lump and consequently the switched
flux w induces a voltage v across the conductor, resulting in
a changed (equivalent) memristance. Note that the missing
magnetism or magnetic flux in other memristors has its role
to play here.

The above lump is normally assumed to be magnetically
uniaxial anisotropic, i.e., it has only one easy axis. Therefore,
the magnetization M of the lump will tend to align with the
easy axis, which is an energetically favorable direction of
spontaneous magnetization.20 The corresponding memris-
tor is a two-state charge-controlled ideal memristor, among
those resistance-switching memories that are identified as
ideal memristors by Chua.2 Chua also proposed recently a
new theorem proving that all non-volatile memristors should
exhibit a continuous range of resistances, although one may
observe only two distinct resistances in practice, because
the device may exhibit a very steep (but continuous) “state-
dependent Ohm’s law.”21 For those memory/logic applica-
tions requiring only two states, the memristor needs to
exhibit only two equilibrium states that are sufficiently dis-
tinguishable and consumes little energy while switching
swiftly between these two states. At both equilibrium states,
the memristor does not dissipate any power since v(t) =
df(t)/dt = 0 and i(t) = dq(t)/dt = 0 except during the brief
switching time intervals.2

In addition to uniaxial anisotropy, a magnetic lump with
cubic anisotropy has three or four easy axes.20 Furthermore,
a magnetically isotropic material has no preferential direc-
tion for its magnetization unless there is an external mag-
netic field.20 Accordingly, it is possible to design an ideal
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memristor with multi/infinite-stable states for both digital
and analog applications.

The necessity of including magnetic materials in a
physical memristor is twofold: Firstly, none of the operating
memristors so far is based on the interaction between the
physical magnetic flux and the physical electric charge
although the memristor, by its original definition of ideal
memristor1 in 1971, should relate these two physical attributes.
In other memristors reported after the HP seminal publica-
tion,6 either the physical magnetic flux or the physical elec-
tric charge (or both) is missing. Secondly, the introduction of
magnetic material with rich hysteresis provides a good source
of nonlinearity for memristor that should be a nonlinear
circuit element.1

The above design is different from other (binary) memris-
tors [namely, ReRAM (Resistive Random-Access Memory),22

STT-RAM,16,17 and MTJs (Magnetic tunnel junctions)23]: (1) The
Φ memristor is an ideal memristor, whereas others are not
(due to the existence of the hard magnetic layer, for example,
see Sec. III for details); (2) The structure of the Φ memristor
is much simpler as it only has a (one-body) magnetic lump,
whereas others have at least three layers (e.g., hard mag-
netic/insulator/soft magnetic); (3) The memristance of the
Φ memristor results from the interaction between the lump

and the current-carrying conductor, whereas others’ memri-
stance from the interaction between those multi-layers;
(4) The Φ memristor is so far at a macroscopic scale and
potentially at a nano-scale (see Sec. VI), whereas others at a
nano-scale only.

One reason why it took 37 years for us to see the HP
memristor after Chua formulated and named the memris-
tor in 1971 is because the HP memristor phenomena [the
memory-holding ionic current (oxygen vacancies)] is only
observable in the nano-scale.6 Although such a nano-scale
attribute is essential for the IC industries, the memristor
should also be a commercially available off-the-shelf basic
circuit element for designing macro-scale (mundane-size)
intelligent circuits and systems. Therefore, our Φ memris-
tor will hopefully fulfil this need as its physical size can
scale up from the nm to the mm/cm scale (see Sec. II for
details).

Prodromakis unearthed that memristors made even in
the Victorian era are macro-scale.24 Other macro-scale mem-
ristors include: organic memristor by Erokhin et al.,25 a real
memristor circuit for the experimental demonstration of
chaos by Gambuzza et al.,26 and a physically flexible TiO2

memristor device by Gergel-Hackett et al.27 As pointed out by
an anonymous reviewer, we are not the first person to make a
macroscopic scale memristor, but we may be the first to do
so using an actual magnet.

C. Physics of the Φ memristor

Next, we will produce a theory to describe physically the
flux-charge interaction. Suppose that the lump is a single-
domain cylinder with uniaxial anisotropy in the approximate
sense: the magnetization is uniform and rotates in unison.28

In an ideal case, it is assumed that there is a negligible
amount of eddy current damping and any parasitic capacitor
effects.

It is found that the rotational process dominates in
the fast reversal of square loop ferrites (a switching coeffi-
cient, SW, of about 0.2 Oe μs is the minimum value obtain-
able with the materials that have normal gyromagnetic
ratios).29 The corresponding rotational model for our Φ
memristor is shown in Fig. 2, where the easy axis is along
the Z axis, MZ is the component of the saturation magneti-
zation MS in the Z axis, and the magnetic field H is applied
in the Z direction.

Let us write the Landau–Lifshitz–Gilbert equation as
follows:

(1þ g2)
dMS
Q

(t)
dt

¼ �jγj[MS
Q

(t)�H
Q

]� gjγj
MS

[MS
Q

(t)� (MS
Q

(t)�H
Q

)],

where g is the Gilbert damping parameter and γ is the gyro-
magnetic ratio.

The 1st term of the right-hand side can be re-written as
�jγjMS

Q

(t)�H
Q

¼ �jγj(MSsin θ sin ψH~i�MSsin θ cos ψH~j).
Note this term does not have any ~k component (along the Z
axis) and does not contribute to MZ.

FIG. 1. The Φ memristor based on the direct interaction between the physical
flux and charge. The interaction between a magnetic lump and a current-
carrying conductor in close proximity to each other is proved to be intrinsically
memristive (see the experiments in Sec. II for details). The Oersted field gen-
erated by the current i rotates or switches the magnetization M inside the
lump and consequently the switched flux w induces a voltage v across the
conductor, resulting in a changed (equivalent) memristance. Following this
invention, we named it Φ memristor or Φ/q memristor in a symbolic way: the
ring in “Φ” represents a magnetic lump (e.g., a magnetic core) and the vertical
bar in “Φ” represents a wire going through that lump (core); on the other
hand, Φ often denotes the magnetic flux that is thought to be missing in the
ideal memristor. Note that this structure can be reduced to “one body”: instead
of using the two objects (a magnetic lump and a current-carrying conductor),
we can use only one object that is a ferromagnetic conductor with an input
current directly flowing through its two terminals, which does not violate the
memristive principle (see Fig. 21).
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The 2nd term of the right-hand side can be re-written as

� gjγj
MS

[MS
Q

(t)� (MS
Q

(t)�H
Q

)]

¼ � gjγj
MS

(MSsin θ cos ψ i
Q

þMSsin θ sin ψ j
Q

þMScos θk
Q

)

� [MSsin θ sin ψH~i�MSsin θ cos ψH~j]

¼ � gjγj
MS

[�MSsin θ cos ψMSsin θ cos ψH

�MSsin θ sin ψMSsin θ sin ψH]k
Q

¼ gjγjMSH[sin2 θ cos2 ψ þ sin2 θ sin2 ψ]k
Q

¼ gjγjMSH sin2 θk
Q

¼ gjγjMSH(1� cos2 θ)k
Q

¼ gjγjMSH 1� MZ

MS

� �2
" #

k
Q

:

From the above, we should obtain the following equation:

(1þ g2)
dMZ(t)

dt
¼ gjγjMSH 1� MZ

MS

� �2
" #

: (1)

Assuming m(t) ¼ MZ(t)
MS

, we obtain

dm(t)
dt

¼ gjγjH
(1þ g2)

[1�m2(t)] ¼ 1
SW

i(t)[1�m2(t)], (2)

where SW is the aforementioned switching coefficient. The

threshold for the magnetization switching is automatically
taken into account because the switching coefficient is
defined based on the threshold field H0, which is of one to
two times the coercive force HC.

29–31

The hyperbolic function tanh has d
dx tanhx ¼ 1� tanh2x

and the derivative of a function of function has du
dx ¼ du

dy
dy
dx;

therefore, it is reasonable to assume

m(t) ¼ tanh
q(t)
SW

þ C
� �

, (3)

where d
dt q(t) ¼ i(t) and C is a constant of integration such that

C ¼ tanh�1m0 if q(t = 0) = 0 (assuming the charge does not
accumulate at any point) and m0 is the initial value of m.

dMz/dt is observed by the voltage v(t) induced in the
conductor

μ0S
dMz

dt
¼ S

dBz

dt
¼ dwz

dt
¼ �v(t), (4)

where μ0 is the permeability of free space and S is the cross-
sectional area.

From Eq. (4), we obtain

w ¼ μ0SMþ C0 ¼ μ0SMSmþ C0, (5)

where C0 is another constant of integration.
Combining Eqs. (3) and (5) and assuming w(t ¼ 0) ¼ 0, we

have C0 ¼ �μ0SMSm0, so

w ¼ μ0SMs tanh
q
SW

þ tanh�1m0

� �
�m0

� �
W ŵ(q): (6)

Equation (6) complies with the new three criteria32 for the
ideal memristor: (1) Nonlinear; (2) Continuously differentiable;
and (3) Strictly monotonically increasing. Figure 3 shows a
typical w-q curve with m0 =−0.964 (θ0≈ π) due to the intrinsic
fluctuation otherwise M will be stuck at stable equilibrium
magnetization states θ = 0 or π (m0 ¼ +1).

The remarkable resemblance between Fig. 3 and those
experimentally observed w-q curves in the magnetic cores29–31

inspires us to henceforth use Eq. (6) as a “real-world”
memristor’s constitutive curve in this article. As shown in
Fig. 3, it is quite different from that of Chua’s “fictitious”
memristor with a flux-charge relationship w ¼ 1

3 q
3 þ q.2 We

have lim
q!+1 tanh(q) ¼ +1 for a hyperbolic function whose

output range is normalized from −1 to 1 no matter how big
the input is whereas lim

q!+1
1
3 q

3 þ q
� � ¼ +1 for a polynomial

function (that diverges to infinity). In other words, our “real-
world” memristor’s operation range is finite [where
M(q) ¼ dw

dq = 0], whereas the “fictitious” memristor’s range is

infinite. It seems that the former is more natural than the
latter. As a matter of fact, in artificial neural networks, the
tanh activation function is biologically reflected in the neuron
(it stays at zero until input current is received, increases the

FIG. 2. The rotational model of flux reversal used in our Φ memristor. If the
magnetic field H is applied in the Z direction, the saturation magnetization
vector MS(t) follows a precession trajectory (blue) from its initial position
(θ0≈ π, m0≈−1) and the angle θ decreases with time continuously until
(θ≈ 0, m≈ 1), i.e., the magnetization MS(t) reverses itself and is eventually
aligned with the magnetic field H.
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slope (firing frequency) quickly at first, but gradually approaches
an asymptote at 100% firing rate). Physically, we can give a clear
explanation for the saturation of the “real-world” memristor. As
shown in Fig. 2, such a saturation is because the magnetization
vector is as aligned as the external magnetic field allows it to
be, so there is a negligible change in the magnetization align-
ment on increasing the field above this.

The above continuous differentiable ŵ(q) curve may be
approximated by piece-wise-linear segments for convenience.
Different types of functions will result in different slope (memri-
stance) distributions in their piece-wise-linear approximations:
it is low-high-low for tanh(q), whereas high-low-high for 1

3 q
3 þ q

(a piece-wise-linear charge-controlled “fictitious” memristor in
Fig. 5 of the tutorial2 has such “unnatural” high-low-high mem-
ristance distribution). The physical explanation for the “real-
world” memristor with a large memristance on the middle
segment is the magnetization Ms will swiftly cross “the equator
of the earth” (θ= π/2, an unstable equilibrium, see Fig. 2), induc-
ing a large flux change, if a new equilibrium is not sustained.

No deep physical understanding would be possible even
for the tutorial purpose unless a memristor is modeled prop-
erly, accurately. The above deduced ŵ(q) function [Eq. (6)] is so
important that it will guide the design of an ideal Φ memristor
(Sec. II) and its piece-wise-linear approximation will also be
used in the design of fractional memristor, mem-conductor/
mem-capacitor, and negative memristor (Secs. III–V).

If a step-function excitement current is applied and its
rise time is short enough in approaching constant I, by
Faraday’s law, the induced voltage is

v(t) ¼ dw
dt

¼ μ0SMSI
SW

sech2 I
SW

tþ tanh�1m0

� �
: (7)

Equation (7) is depicted in Fig. 4.

From Eq. (6), the memristance M(q) of our Φ memristor is

M(q) ¼ dw
dq

¼ μ0SMs

SW
sech2 q

SW
þ tanh�1m0

� �
� 0: (8)

From Eq. (8), we should have the following passivity criterion:

FIG. 3. The w-q curve for the “real-world” (charge-controlled) memristor in com-
parison with that for a “fictitious” one.2 The (switched) flux w that occurs in a
magnetic lump depends only on the effective charge q that has flowed through
the conductor and the initial state of magnetization.

FIG. 5. Pinched hysteresis loops for A = 1, SW = 0.3 Oe μs and ω = 1, 2, and 4
rad/s. Hysteresis occurs because the maxima and minima of v(t) do not occur
at the same time as that of i(t).

FIG. 4. Induced voltage vs a step-function input current. The higher the ampli-
tude of the current I, the shorter the switching time ts.
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Theorem I: Passivity Criterion
The Φ memristor is passive.
Proof: Equation (8) shows clearly the slope of ŵ(q) is

non-negative (also see Fig. 3), and hence this Φ memristor is
locally passive at each point on the f-q curve.

This criterion is important for small-signal circuit analysis
since a locally active memristor may give rise to oscillations,
and even chaos.2,19 Local activity and negative memristor will
be discussed in Sec. V.

So far, we found a physical model and the state equation
for this (charge-controlled) Φ memristor: Eq. (8) (depicted in
Fig. 3) is viewed as the state-dependent resistance of the
associated Ohm’s law, and dq/dt = i is the state equation [i(t)
is an arbitrary driving function].

From Eq. (8), it can be seen that the above flux-charge
interaction is intrinsically memristive.

From Eq. (8), it can also be seen that the memri-
stance M(q) is continuous and reaches its peak value when
q
SW

þ tanh�1m0 ¼ I
SW

tþ tanh�1m0 ¼ 0

Mmax ¼ μ0SMs

SW
: (9)

This maximum occurs at the switching time ts, which
provides the correct time point to measure the
(maximum) memristance (for potential memory/switch
applications)

ts ¼ � SW
I

tanh�1m0: (10)

As shown in Fig. 4, the switching time ts in Eq. (10) is
inversely proportional to the amplitude of the input
current I.

Most importantly, Eqs. (6)–(10) illustrate vividly the direct
flux-charge interaction in Fig. 1: a flux in the lump needs to be
switched by a minimum amount of charge. Note that it is
the charge q that controls the switching. A strong current,
or a strong magnetic field, cannot switch the lump without
a minimum time interval (tS corresponding to θ = π/2). The
switching time tS is such a critical point that, beyond π/2,
θ will precess with decreasing amplitude until M has
reversed by π.

The theoretically determined and experimentally vali-
dated flux-charge curves can adequately represent the switch-
ing action and can be easily related to circuit applications. It is
possible to predict the response voltage to an arbitrary input
current source. For example, let us apply a sinusoidal current

source defined by i(t) ¼ A sin(ωt), t � 0
0, t , 0

�
across this memris-

tor. As q(0) =0, we obtain q(t) ¼ Ð t0 i(τ)dτ ¼ A=ω[1� cos (ωt)],
t � 0:Substituting it into Eq. (6), we obtain

w(t) ¼ μ0SMs tanh
A

ωSW
[1� cos (ωt)]þ tanh�1m0

� 	
�m0

� �
: (11)

Differentiating Eq. (11) with respect to t, we obtain

v(t) ¼ dw
dt

¼ μ0SMsA sech2

� tanh
A

ωSW
[1� cos (ωt)]þ tanh�1m0

� 	� �
sin(ωt): (12)

As shown in Fig. 5, we found that hysteresis occurs because
the maxima and minima of v(t) do not occur at the same time
as that of i(t). The fact that both the sinusoidal current i(t)
and the modulated-sinusoidal voltage v(t) become zero at the
same time means they are pinched at the origin, which is the
fingerprint of all memristors.3

D. Our complete differential conformal transformation

As part of our new memristor physics, we re-developed
the traditional differential conformal transformation and
named it the complete differential conformal transformation.
What we mean by “complete” is that our new transformation
covers not only the (traditional) integer-order but also the
fraction-order. The complete transformation will use the
above deduced flux-charge formula [Eq. (6)].

Figure 6 illustrates our complete differential conformal
transformation: the above deduced w–q curve for an ideal mem-
ristor in the w–q plane in (c) is projected onto the v-i (voltage-
current) plane in (d) and M-i (memristance-current) plane in
(b) via q-t in (e) and i-t in (f). We can draw the voltage-current
loci v ¼ v̂(i) corresponding to the above given w ¼ ŵ(q) curve: (1)
Get the angle of incline β of the tangent line at an operating
point in the w ¼ ŵ(q) curve and draw a straight line through the
origin in the v-i plane whose angle of incline is β0 = β; (2) Project
the point from the w–q plane onto the v-i plane (by following
Projection Lines ①, ②, and ③); (3) By meeting Projection Line ③

with the line drawn in the first step, get the same time point in
the v-i plane [Fig. 6(d)] and the M-i plane [Fig. 6(b)].

If the sinusoidal current source i(t) = A sin(ωt) is applied
across the memristor, the corresponding memristor charge is
given by q(t) ¼ d�α

dt�α i(t) ¼ d�α

dt�α A sin(ωt) ¼ Aωα 1� sin ωtþ α
2 π

� �
 �
,

where d�α

dt�α is the fraction-order calculus operator (0 � α � 1).
The introduction of the fraction-order calculus here is to describe
some non-ideal memristors whose flux-charge-coupling is
fractional (see Sec. III for details). Note that a sinusoidal input
is used here without losing the generality because any periodic
function can be decomposed into Fourier series of sines and
cosines. Furthermore, our theory [centered around Eq. (6)]
even does not stop one from applying a non-periodic input as
long as they think using a non-periodic signal is necessary and
beneficial for their tests. Then, based on the derivative of a
function of function, we have a generic expression for the
complete transformation (including both the fraction-order
and negative cases) as follows:

v(t) ¼ dα

dtα
w(t) ¼ dαŵ(q)

dqα
dαq(t)
dtα

¼ Mα[q(t)]i(t), (13)

where Mα(q) is the memristance in the fraction-order.
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As can be seen in Fig. 6, q(t) shifts by (α/2)π along the t
axis with respect to i(t) = A sin(ωt), which will lead to the
asymmetric hysteresis loop in the v-i plane [Fig. 6(d)] and the
asymmetric memristance hysteresis loop in the M-i plane
[Fig. 6(b)]. Such an asymmetry (unequal switching currents
jIþc j = jI�c j) is worth studying in depth. It manifests the differ-
ence between the switching current from the low-resistance
state to the high-resistance state and the one from high to low,
as shown in Fig. 6(b). This asymmetry may increase the com-
plexity of the peripheral circuit design and compromise the
reliability of operation in neuromorphic computation engineer-
ing. Theoretically, we should have the following criterion:

Theorem II: Symmetry Criterion
The (charge-controlled) Φ memristor has an odd-

symmetric voltage-current hysteresis loop and a symmetric
memristance hysteresis loop if it is driven by an odd-
symmetric periodic excitement current.

Proof: The memristance as a function of time is a func-
tionM(q) of function q(t). As can be seen in Fig. 6, when α = 1, q(t)
is symmetric about S00 [as it is the integral of an odd-symmetric
function i(t) about S0] and the f-q curve [determined by Eq. (6)]
is odd-symmetric about O0. Therefore, the memristance as the
slope of the f-q curve must be a symmetric function (Fig. 3) and
the memristance hysteresis loop M(i) is therefore symmetric as
it is driven by the odd-symmetric excitement current i(t). From
Eq. (13), the response voltage v(t) must be odd-symmetric and
hence the v-i loci is also odd-symmetric about O. Obviously,
this symmetry will be broken when α < 1 since the shifting
charge q(t) is not symmetric about S00 any longer.

In Fig. 6(c), the differential memristance is defined as the
derivative of the flux with respect to the charge or the ratio
of a small change in flux to the corresponding change in
charge in the f-q plane; in Fig. 6(d), the chord memristance is
defined as the slope of a straight line connecting the corre-
sponding point to the origin in the v-i plane.2

Actually, the projection from the w–q plane to the v-i
plane in Fig. 6 is based on the following theorem:

Theorem III: Conformality Criterion
The complete differential transformation that covers

both integer-order and fraction-order is conformal.

FIG. 6. The complete differential conformal transformation. It projects the above
deduced w–q curve for an ideal memristor in the w–q plane in (c) onto the v-i
plane in (d) and M-i plane in (b) via (e) and (f ). This transformation is complete
since it covers all cases in this article: α = 1 corresponding to a (positive) ideal
memristor (Sec. II); −1 < α < 1 corresponding to a (positive/negative) fractional
memristor [Sec. III, the shift of q(t) along the t axis in (e) results in both the
asymmetric v-i loci in (d) and M-i loop in (b)]; mem-inductor/mem-capacitor can
be characterized in their own constitutive planes in a similar way (Sec. IV);
α =−1 corresponding to a negative (ideal) memristor (Sec. V, the w-q curve
enters the 2nd and 4th quadrants of the w-q space). The two physical attributes,
w and q, will bridge this transformation and a complete triangular element table
in (a) (to be elaborated in Fig. 7).

FIG. 7. The complete triangular periodic table of elementary circuit elements. w
and q used in the complete differential conformal transformation (Fig. 6) are
thought to be a pair of complementary basic attributes that generate elementary
circuit elements. Each apex represents an exclusive class of elements (namely,
ideal memristor, ideal mem-inductor, and ideal mem-capacitor). The intermediate
case between the apexes represents fractional memristors. This triangle can infi-
nitely be expanded inwards and outwards to have those apexes’ higher order or
lower order counterparts. Note that negative elements are not included by this (pos-
itive) triangle because it is purely a collection of passive elementary circuit elements.
As can be seen in Fig. 15, this (positive) triangle can be projected onto a screen in
the negative space to obtain a negative triangle of those negative elements.
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Proof:

β ¼ arctg
dαŵ(q)
dqα

� �
¼ arctg

dα
dtα ŵ(q)
dα
dtα q(t)

 !
¼ arctg

v(t)
i(t)

� �
¼ β0:

That is to say, the differential transformation in the fraction-
order still preserves angles in the same way as the (tradi-
tional) integer-order transformation does. This is why we
named “the complete conformal differential transformation.”
Obviously, the (differential) memristance of a point on the
f-q curve equals the chord memristance of the correspond-
ing point on the v-i curve in the complete transformation.

Typically, Fig. 6(d) is a pinched hysteresis loop, i.e., it
passes through the origin. It also displays a double-valued
Lissajous figure [v(t)-i(t)] for all times t. Obviously, the finger-
print of a memristor3 can be seen.

These pinched hysteresis loops contain a small region
with a negative slope. The negative slope just indicates a
phase-lag between the peak of the response voltage v(t) and
the peak of its excitation current i(t) and is irrelevant to the
local activity.2,19 Local activity and negative memristance will
be discussed in detail in Sec. V.

Note that our transformation does characterize a mem-
ristor’s behavior by the flux-charge relationship [as shown in
Fig. 6(c) and Eq. (6)] and it is such a universal tool that all
waveforms are covered. Although a sinusoidal input is used in
Fig. 6(f ), our transformation is not constrained to any specific
signal at all. In the same manuscript, we will use at least four
different waveforms: a sinusoidal input, a triangular input, a
square-wave input, and a sequence of spikes.

E. Our complete triangular periodic table of
elementary circuit elements

As part of our new memristor physics, we will build a
complete triangular circuit element table (Fig. 7) based on the
above complete transformation. The two physical attributes,
w and q, will bridge the transformation and the table: on the
one hand, they are used in the complete differential confor-
mal transformation as two dimensions of the constitutive
plane; on the other hand, they generate elementary circuit
elements as a pair of complementary basic attributes in the
circuit element table.

A two-terminal elementary electronic circuit element
should link two physical attributes (w or q and their deriva-
tives), at least one of which should be physically intrinsic and
basic. It is our opinion that, within a certain context, w and q
should be more basic than v and i.5 Physically, the magnetic
flux and the electric charge are fundamental features associ-
ated with the material and physical mechanism in terms of
describing an object. Contrarily, the voltage and current
could be derived from the flux and charge. Furthermore,
although conveniently used in engineering applications, the
voltage and current only exhibit external measurements of an
object (e.g., the voltage v is always a “difference” and the
current i is always the movement of charge q).5

Sharing the same SI unit, the three apexes of the triangle
represent three exclusive classes of elements [namely, ideal
memristor (the w/q class), ideal mem-inductor (the ∫w/q
class), and ideal mem-capacitor (the ∫q/w class)]. As an excep-
tion, the element linking ∫w and ∫q should not be elementary
because both ∫w and ∫q are derived (from the basic attributes
f and q mathematically). The exclusion of ∫w/∫q is decisive
otherwise the Chua’s quadrangle (based on v, i, f, and q)4 will
not collapse to a triangle (based on f and q only).5

This triangular table is new as it is extended to include
more circuit elements: the intermediate case between the
apexes (the integer-order elements) represents fractional
memristors, in which the interaction between the flux and
charge is fractional (see Sec. III for details); the positive trian-
gle in Fig. 7 can be projected onto a screen in the negative
space to obtain a negative triangle of those genitive elements,
as can be seen in Fig. 15.

In our opinion, the importance of predicting new circuit
elements via an element table is similar to that of Mendeleev’s
periodic table of chemical elements in chemistry and the
table of 61 elementary particles in physics. Note that the
above element tables (no matter whether it is rectangular
or triangular) can infinitely be expanded inwards and out-
wards to have those apexes’ higher order or lower order
counterparts. High-order memristors may be unusual but still
exist. For example, the two time-varying resistors approxi-
mated by Hodgkin and Huxley 70 years ago in their famous
Nobel-prize-winning Hodgkin–Huxley axon circuit model were
eventually found to be a first-order memristor for the potas-
sium ion channel and a second-order memristor for the
sodium ion channel.33

Next, we will use the above physics to study a number of
memristors and study their potential applications in neuro-
morphic computation.

II. Φ MEMRISTOR

As the first attempt of the above new memristor physics,
the Φ memristor will be investigated experimentally. A mag-
netic core with a wire passing through it (inset of Fig. 8) is
used as a Φ memristor. In principle, the magnetic lump in the
Φ memristor can take any shape, e.g., a ball, slab, ring, or
barrel. The shape matters in terms of the efficiency of the
magnetism-electricity coupling. As can be imagined, any
“closed” shape (e.g., a ring) encircling the conductor can
couple magnetism and electricity more efficiently than those
“open” shapes (e.g., a ball). However, there are two sides to
everything. Such a “closed” structure may bring in a side-
effect—the parasitic “inductor” effect.

In the experimental apparatus, the wire carries a con-
trolled amount of current and simultaneously senses for the
possible emergence of an induced large transient voltage
response. Different from a standard magnetic core memory
cell with several wires (typically two X/Y lines for coincident-
currents plus one sense/inhibit line), this device is a two-
terminal circuit element.
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The core (Mn-Cu ferrite with an easy magnetization axis
along its circumferential direction and a switching coefficient
of 0.25-0.35 Oe μs) has an inside diameter of 0.762mm, an
outside diameter of 1.27 mm, and a height of 0.381mm
(extracted from a 1960s’ 64 × 64 bits magnetic core memory
purchased from eBay). The wire going through the cores is an
enamelled copper wire purchased from Maplin with a diame-
ter of 0.56mm. Simply speaking, this memristor is a reduced
magnetic memory core with only one wire.

A current source (Tektronix MHS-5200P High Precision
Digital Dual-channel Signal Generator with attached power
amplifiers in series with a cement resistor of 47Ω 30W) is
designed to deliver i(t) which is independent of the voltage
across the core memristor whose equivalent resistance is less
than 1Ω. The two channels are connected in series to double
the output voltage of a single channel. The two fixed probes
are used to measure the possibly induced voltage v(t) between
the two terminals.

Pulse responses against a step function input are observed.
As elaborated above, the core can be switched from one of
the two states to the other by applying an appropriate
current pulse through the wire. Figure 8 shows the induced
voltage waveform measured from the same wire carrying an
input current. The voltage response exhibits a steep but con-
tinuous “state-dependent Ohm’s law,” just as predicted in
Eqs. (7) and (8) (the power of the hyperbolic function sech). A
reasonable agreement between the model and the measured
waveform can be seen.

In principle, a memristor should exhibit a continuous range
of resistances. We notice that both the Φ and spintronic

memristors34 exhibit bi-stable states and a continuous range
of resistances. The resistance curve is steep but still continu-
ous, which follows well the “state-dependent Ohm’s law” as
indicated in Eq. (8). This fact does not surprise us as the mag-
netic lump in our Φ memristor is equivalent to the “soft” mag-
netic layer in the spintronic memristor. The difference is the
current’s driving mechanisms: in our Φ memristor, we use the
current’s Oersted field to facilitate the flux-charge interaction
(satisfying Chua’s 1971 definition of ideal memristor1), whereas
in the spintronic memristor they use the electrons’ spin (after
a “hard” magnetic layer that filters the spin orientations) to
interact with the magnetization (spin) in the “soft” layer.16,17

Note that a parasitic “inductor” effect exists in the
core structure, which was observed as sharp transient
spikes caused by the sudden change of the input current

VL(t) ¼ L di(t)
dt = 0

� 

. Fortunately, this effect is narrowly con-

strained at the rise/fall edges of the step function. We
removed these high-frequency noises by simply using the
“compensation adjustment” function (a low-pass filter, LPF) of
an oscilloscope (GW Instek GDS-1072B). In the most time of
the cycle (especially in the memristive region of our interest),

no “inductor” exists as VL(t) ¼ L di(t)
dt ¼ 0.

Definitely, the Φ memristor is neither “an inductor with
memory” nor a mem-inductor although there may exist the
parasitic “inductor” effect. Actually, in Sec. IV, the uniqueness
of those circuit elements with memory is demonstrated in
ANA whose (adaptive) time constant {

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L[q(t)]C

p
} is determined

by a mem-inductor (whose inductance is a function of
charge).19 What makes our Φ memristor different from mem-
inductor and others is that its resistance is a function of
charge [Eq. (8) and Fig. 8]. Experimentally, no capacitive or
inductive effects was observed (otherwise there should be a
phase shift between the current and voltage) by taking two
measures: (1) Using the step function excitement current only
and (2) using a low-pass filter that passes signals with a fre-
quency lower than a certain cut-off frequency and attenuates
noises with frequencies higher than the cut-off frequency.

As we tested, no voltage was generated when we applied
a current through a bare wire without any magnetic core
(since an ideal wire has no resistance). It is the magnetization
in the core that induces a voltage through its reversal, which
has been observed.

Figure 9 shows the complete differential conformal
transformation for our ideal Φ memristor (α = 1). A square-
wave excitement current results in a triangular waveform
charge as the charge is the integral of the current. Clearly
when the charge is sweeping incrementally, the flux exhibits
a cumulative effect as it is the integral of the response voltage
[take Eq. (7) and Fig. 4 for reference]. The intrinsic constitu-
tive w-q curve can then be uniquely determined by the appli-
cation of the above square waveform current excitement.

As the key mechanism of this ideal memristor, the mem-
ristive electricity-magnetism interaction is experimentally
verified based on the observed frequency dependence and
zero-crossing as follows. The frequency-dependent Lissajous
figure reflects a nonlinear relation between the memristor’s

FIG. 8. The experimental apparatus and current pulse responses to verify our
Φ memristor model. The induced voltage v(t) against the step function input
current i(t) exhibits a steep but continuous “state-dependent Ohm’s law.”
Furthermore, the switching time ts is inversely proportional to the amplitude of
the input current I, which is in an agreement with the theory in Eq. (10) and
Fig. 4. Horizontal: 50 ns/div; vertical: 20 mA/div (yellow), and 50 mV/div (blue).
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charge and flux. The loop shrinks with increased frequency
and such a frequency dependence is a fingerprint of a mem-
ristor.3 Moreover, both the current i(t) and the voltage v(t) are
pinched at the origin as expected.3

As a result, we experimentally found that the memristive
effect is observable and even a simple combination of a mag-
netic lump and a conductor (Fig. 1) could be an ideal memristor.
We claim our new device is an ideal memristor in the sense
that it involves only the flux-charge interaction in a classic way
(no quantum effect, no spin effect) and is therefore not con-
strained by its physical size.

Figure 10 shows the measured voltage response against
the positive-positive-negative-negative input current pulse
pattern. This voltage response should exhibit a yes-no-yes-no
reversal pattern because the 1st positive current pulse in the
sequence will always switch the core (after many cycles of the
periodic excitement), whereas the 2nd one does not since it is
opposite to that which would switch the core. In other words,
the no-switching state of the core always follows the flux
reversal. As can be seen clearly, the voltage waveform of a
no-switching core is much smaller (at least 1:3) than that of a
switching one, which is vital for reliable memristor operations.
Although the response should be zero for a no-switching core

in theory, a small signal can still be seen because the core
material is not 100% in being magnetically uniaxial anisotropic.
The areas of the positive and negative responses are equal,
because there is no net change in the flux linkage. One
curious reader may want to see the sharp transient spikes
caused by the rapid change of the step function input current
without using the above mentioned low-pass filter.

Our ideal Φ memristor may help understand better the
real physical mechanism of the memristor by interacting
directly the flux and charge according to memristor’s origi-
nal definition. From a historical perspective, we note that
since our flux-charge-interaction-based Φ memristor is
defined basically via Oersted’s law, which was discovered by
Oersted in 1820,35 its physical operating principle actually
predates that of the resistor, which was formally published
by Ohm in 1827,36 and the inductor, which was formally pub-
lished by Faraday in 1831.37

III. FRACTIONAL MEMRISTOR

Based on the complete differential conformal transforma-
tion in the fractional order described in Sec. I, we define the
fractional memristor in contrast to the traditional (integer-
order) memristor.2 On the one hand, an (ideal) memristor

FIG. 9. The complete differential conformal transformation (α = 1) for our Φ
memristor and the experimentally-verified memristive electricity-magnetism inter-
action. Two memristor fingerprints can be seen: (1) Frequency dependence; (2)
Zero-crossing. Note that a square-wave excitement current is used here since a
(continuous) sinusoidal current cannot be used due to the parasitic “inductor”
effect in the magnetic core. A careful examination of the photos reveals that the
return path ①-② is not ideally vertical to the i(t) axis and this is because the
excitement current is not ideally flat. Scales in photos: horizontal: 20 mA/div;
vertical: 50 mV/div.

FIG. 10. The measured voltage response against the
positive-positive-negative-negative input current pulse pattern. This voltage
response exhibits a yes-no-yes-no reversal pattern as anticipated. Horizontal
scale is 1 μs/div; Vertical scales are 100 mA/div (upper) and 50 mV/div (lower).
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(with a w–q curve shown in Fig. 3, for example) can be approxi-
mated by a multi-segment piece-wise-linear curve for conve-
nience. On the other hand, the piece-wise-linear w–q curve
itself represents perfectly the STT memristor with a rectangu-
lar memristance R-i curve.

A typical STT memristor (with the asymmetric rectangular
resistance hysteresis) is studied as an example. If ω = 1, we have
q(t) ¼ d�α

dt�α i(t) ¼ d�α

dt�α [2Q0 cos (ωt)] ¼ 2Q0 cos ωt� α
2 π

� �
. When the

fraction-order α = 0.8,q(t) ¼ 2Q0 cos (ωt� 0:4π), which is
drawn in Fig. 11(e). Obviously, q(t) shifts by 0.4π along the t
axis. Such a shift causes an asymmetric shift (jIþc j = jI�c j) of
the two switching points of the v-i and R-i curves although
the breakpoint Q0 of the w-q is fixed.

The resemblance between such an asymmetric rectangu-
lar R-i curve in Fig. 11 and the measured one in Fig. 12 reveals
that a typical STT junction is actually a 0.8 fractional

memristor. According to our Symmetry Criterion (Theorem
II), for an ideal memristor (α = 1), there is no asymmetry (ΔI ¼
0) and it should have a symmetric rectangular M-i curve.
With the increase of ω, the asymmetry reaches its maximum
at different fractional-orders.13

The above conclusion that a STT is a 0.8 fractional mem-
ristor means the traditional (integer-order) transformation
does not work. It is our proposed Theorem III (Conformality
Criterion) that guarantees the necessary fraction-order
transformation.

In practice, all real electrical elements may not be ideal
and represent the intermediate cases between the ideal
ones. As an example, we interpreted the physical origins of
the asymmetric switching currents in the STT memristor. In
the neural network and STT MRAM (Magnetic Random
Access Memory) applications, besides the reduction of criti-
cal current, the reduction of switching asymmetry is another
important issue for the proper operations.13 The fractional
memristors can also seamlessly fill the gaps between the
ideal elements in the Complete Triangular Periodic Table of
Elementary Circuit Elements. The position of fractional
memristor in the positive or negative triangle can be found
in both Figs. 7 and 15.

IV. MEM-INDUCTOR AND MEM-CAPACITOR

Memristor’s variants, namely, mem-inductor or mem-
capacitor, can help design ANA18 that self-adjusts its inherent
parameters (for instance, the resonant frequency) naturally
following the stimuli frequency. Such an architecture is
required for brain-like computers because some parameters
of the stimuli (for instance, the stimuli frequency) cannot be
known in advance. In principle, such adaptivity can be pro-
vided by a circuit element with memory because it is history-
dependent in its behavior.

FIG. 11. A special case (−1 < α < 1) of the complete differential conformal
transformation for fractional memristor. The Symmetry Criterion (Theorem II)
and the Conformality Criterion (Theorem III) in Sec. I are used here. When α =
0.8, the shift Δt of q(t) along the t axis in (e) causes the asymmetric shifts
(jIþc j = jI�c j) of the two switching points of the v-i in (d) and R-i or M-i curves
in (b) although the breakpoint Q0 of the w-q is fixed. Note that the v-i loci in the
fractional-order memristor is also a pinched hysteresis loop through the origin,
which is the fingerprint of a memristor.2,3 The numbers in red label successive
time points. Note the subscripts “P” and “AP” stand for “Parallel” and
“Anti-Parallel,” respectively. [Reproduced with permission from Wang et al.,
Appl. Phys. Lett. 111, 243502 (2017). Copyright 2017 American Institute of
Physics.]

FIG. 12. An asymmetric rectangular R-i curve with two stable, distinct memris-
tances is measured in many STT junctions. Note that a typical R-i curve based
on38–41 shifts by ΔI ¼ jIþc j � jI�c j along the i axis. Iþc represents the critical
current corresponding to the switching from P to AP, whereas I�c represents the
critical current corresponding to the switching from AP to P. [Reproduced with
permission from Wang et al., Appl. Phys. Lett. 111, 243502 (2017). Copyright
2017 American Institute of Physics.]
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Note that memristor cannot be used directly in this
case, as an RLC circuit’s time constant (

ffiffiffiffiffiffiffi
LC

p
), determining

the resonant frequency, does not have any resistance term.
Mem-inductor (L) or mem-capacitor (C) can ideally be used
here and Fig. 13 displays the complete differential conformal
transformation for mem-inductor and its delayed switching
effect.42,43 Note that mem-inductor’s constitutive space is the
∫f-q plane. Also note that mem-inductor and mem-capacitor
are represented by the other two apexes (in addition to the
memristor one) of the triangle (inset of Fig. 13).

As a hardware implementation of biological systems,
ANA can be used to reproduce adaptively the observed bio-
logical phenomena in amoebae. [See Fig. 14(b) for details: the

amoeba slows down when the ambient temperature drops at
time points S1, S2, and S3 and can, even if the temperature
does not drop any longer, still predict the time of the next
temperature drop by slowing down again at the times C1, C2,
and C3 when the drop would have occurred.]44,45 A simple
RLC neuromorphic circuit using a mem-inductor, L(q), was
designed (Fig. 14). An input voltage, Vin, represents the tem-
perature and humidity that control the motion of the
amoeba, whereas an output voltage across the capacitor,
Vout, is an analogue to amoeba’s locomotive speed.

FIG. 13. The complete differential conformal transformation in the ∫f-q space
for mem-inductor. Mem-inductor’s delayed switching effect can be seen: the
switching from one state (L1) to another (L2) due to an input flux pulse takes
place with a time delay. The effect also applies to a train of spikes (“action
potentials” in neurons, i.e., short-lasting events in which the electrical membrane
potential of a cell rapidly rises and falls). If the transition period (Time point 1-2)
of the ∫f-q curve consists of a number of linear segments, the same number of
stairs in the current i(t) can be generated. Reproduced with permission from
Wang et al., Neural Netw. 45, 111–116 (2013). Copyright 2013 Elsevier.

FIG. 14. A mem-inductor, L(q), is used in an RLC neuromorphic circuit to cover a
stimuli frequency with a deviation. An amoeba is put in a long tube full of fresh
water at a controllable temperature measured by a thermometer. A video camera
is used to measure the amoeba’s migration speed. Reproduced with permission
from Wang et al., Neural Netw. 45, 111–116 (2013). Copyright 2013 Elsevier.
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V. NEGATIVE MEMRISTOR

A. Concept

We proposed supersymmetry in circuit theory similar to
supersymmetry in particle physics (every fundamental parti-
cle has its supersymmetric particle, which is heavier than its
corresponding ordinary one because supersymmetry is a
broken symmetry in nature). The essence is that each ele-
mentary circuit element has a supersymmetric element
which is “heavier” (due to an internal power source) than its
corresponding passive one. That is to say, positive elements
and negative elements are categorized into two different tri-
angles, as shown in Fig. 15. The motivation to introduce a neg-
ative memristor is to not only complete our previously
proposed triangular circuit element theory in a symmetric
way but also support some real-world applications in neuro-
morphic computation. Concretely, negative memristor can be
classified into two types.

Charge-controlled negative memristor [CCNM, Fig. 16(a)]:
In this type, the flux is a single valued, continuous function of
the charge, but the charge is a multivalued function of the
flux. In the most common type, there is only one negative
memristance region. As the charge is increased, the flux
increases (positive memristance) until it reaches a maximum,
then decreases in the region of negative memristance to
a minimum.

Flux-controlled negative memristor [FCNM, Fig. 16(b)]: In
this type, the charge is a single valued function of the flux,
but the flux is a multivalued function of the charge. In the
most common type, with one negative memristance region.

The following activity criterion shows what class of
memristors might be synthesized in an “artifact” form with

internal power supplies. For convenience, it is assumed that
the f-q curve passes through the origin and the left- and
right-hand derivatives exist at each point.

Theorem IV: Activity Criterion
A memristor characterized by a continuous charge-

controlled f-q curve is artifact and active if its differential
memristance M(q) is negative at the origin, M(q = 0) < 0, i.e.,
locally active at the origin.

Proof: The instantaneous power dissipated by a mem-
ristor is given by

P(t) ¼ i(t)v(t) ¼ M[q(t)][i(t)]2: (14)

Suppose that there exists a point q0 (corresponding to t0) such
that M(q0) < 0, then P(t0) < 0 and the memristor is locally
active13 at that point. Because the left- and right-hand deriva-
tives at each point on the f-q curve exist, such differentiability
(a continuous function need not be differentiable) implies that
there exists an ϵ > 0 such that M(q0 þ Δq) , 0, jΔqj , ε. If the
memristor is driven by a current i(t) which is zero for t � T
and such that q(t) ¼ q0 þ Δq(t) for t � t0 � T where jΔq(t)j , ε;
then

Ð t
�1 P(τ)dτ , 0 for sufficiently large t, and hence the

memristor is active.1 For convenience, the negatively sloping
branch is always assumed to cross the origin so the f-q curve
enters the 2nd and the 4th quadrants.

This criterion shows that a negative memristor is active
and artifact with a f-q curve synthesized in practice by active
networks. As its converse, only memristors characterized by a
monotonically increasing f-q curve can exist in a passive
circuit element form without internal power supplies.

As shown in Fig. 17(a), a locally active memristor exhibits
a negative slope at the origin of the f-q curve. It follows

FIG. 15. The negative triangular periodic table of circuit elements and negative
memristor (α =−1). As well as other negative elements, it can symmetrically
extend their (positive) counterparties to the negative space. A positive triangle
includes all the positive elements, whereas a negative triangle includes all the
negative ones.

FIG. 16. f-q curve of a negative or “active” memristor. Taking (a) as an
example, it has negative differential memristance, M(q) = df/dq, at the origin,
i.e., is locally active (at the origin). Unlike in the conventional (positive) memris-
tor, the downward sloping region (in red) of the f-q curve passes through the
origin, so it enters the 2nd and 4th quadrants of the plane, meaning the device
sources power. A large enough charge or flux moves the memristor into its
black region in which the differential memristance becomes positive and the
memristor consumes power.
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therefore that an ideal memristor cannot exhibit a negative
memristance unless it is locally active at the origin, which is
possible only if the memristor has an internal source of
power, such as light, chemical or nuclear reactions, or batte-
ries. An example of this kind of active memristors is active
ReRAM (which is called nanobatteries).22

B. Negative memristor’s features

There is a vast array of literature on memristors in neural
networks and/or memristive synapses after the Pershin/
Ventra seminal work.46 Our scheme of using the above nega-
tive memristor as synapses has an advantage over previous
ones: it can cancel the internal membrane resistance of the
neuron in some neuromorphic computation applications.

The negative memristor exhibits the delayed switching
effect, as shown in Fig. 17(b). The physical interpretation of this
phenomenon is that the physical attributes (such as flux and
charge) of an electron element are inertial with the tendency
to settle to some equilibrium state and remain unchanged.42,43

The response cannot take place as rapidly as the variation in
the excitation waveform and it always takes a finite but small
time interval.

In a memristive neural network, a square-wave signal is
equivalent to a sequence of spikes with the same net area in

order to switch a memristor synapse [Fig. 17(c)]. The memri-
stance M(f) of a flux-controlled memristor depends on the
complete past history of the voltage. Therefore,

w(t ¼ Td) ¼
ðTd

0
v(τ)dτ ¼ VTd, (15)

Td ¼ w1

V
: (16)

Equation (16) clearly demonstrates that the delay Td for switching
decreases with an increased spike amplitude V or a decreased
f1. If the input voltage is removed before the switching takes
place, the negative memristor remains unchanged. Therefore,
in order to switch a negative memristor, we should take T > Td.
Actually, the complementary features of those positive/negative
element pairs could be studied in a symmetric way.

C. Negative memristor in neuromorphic computation

Any realistic implementation of a synapse should ideally
be at least four orders of magnitude smaller than that
required to build a neuron (that may be connected to other
neurons through about 20 000 synapses in the human brain).
A LaAlO3/SrTiO3 junction presents a uni-polar pinched hys-
teresis loop and also shows a potential that a memristor
synapse could be scaled down to half a nanometer.47

Similar to the recreation of Pavlov’s experiment with
memristor,46 a negative memristor is used as the synapse
[Fig. 18(b)] to eliminate the internal membrane resistance of
the neuron in order to have an “ideal” signal source. The idea
was inspired by the usage of a negative resistor in an ideal
voltage source [Fig. 18(a)]. The internal longitudinal resistance
of a 1 cm length of axon with a 1 cm2 cross-sectional area
ranges from 30 to 250Ω.48,49

At the very beginning, the negative memristor MN is pro-
grammed at jMN

1 (w)j � r to cut off the S2 link, i.e., the “Bell”
stimulus alone will result in VO ≈ 0. In contrast, the “Sausage”
stimulus can easily pass through S1 via a small r and activate
the “Salivation” neuron, i.e., VO≈ VS. The training is con-
ducted by applying both “Sausage” and “Bell” simultaneously.
Consequently, a “Full Voltage” drop will be applied across the
(negative memristor) synapse S2, gradually switching it from
MN

1 (w) to MN
2 (w) ¼ �RM and establishing the conditioning

during the training. After the training, the “Bell” stimulus alone
can easily pass through S2 (since it is of no resistance) and
elicit “Salivation,” i.e., VO≈VB. The “Sound” neuron behaves
like an ideal voltage source whose voltage output does not
change with the possibly changing Rload because its internal
(membrane) resistance has been completely cancelled by the
introduction of the negative memristor.

D. Circuit experiments

An electronic negative memristor synapse is imple-
mented by the microcontroller (dsPIC30F2011) that reads the
digital code from ADC and controls a switch K to connect a
negative resistor out of a series to increment/decrement the

FIG. 17. A special case (α ¼ �1) of the complete differential conformal trans-
formation for a (flux-controlled) negative memristor. It is defined in terms of a
non-linear functional relationship between magnetic flux linkage, w(t), and the
amount of electric charge, q(t), in the 2nd and 4th quadrants of the w-q space.
In this firgure, we assume that the negative memristor is characterized by the
“monotone-decreasing” and “piece-wise-linear” nonlinearity. The superscript N in
the symbol for the memristance M stands for “negative.” A negative memristor
naturally exhibits the delayed switching. The effect also applies to a train of
spikes [in (c)], well used in neuro-morphic computation.
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negative memristance continuously. As shown in Fig. 19, the
electronic negative memristor exhibits clearly a negative
memristance and the Delayed Switching effect.

E. Negative memristor summary

We define the negative memristors based on the Activity
Criterion (Theorem IV). It exhibits an ability for an active
element to obtain the negative of any resistance. Locally
passive memristors supplement transistors in memory func-
tions and logic circuits with effective structures but do not
satisfy all the needed requirements.50 The sodium memristor in
the Hodgkin–Huxley model is a second-order one (see Sec. I)
that is passive and locally active (its locally active domain may
be accessed by means of suitable battery-based biasing).33 As
the last attempt of our new memristor physics, the negative
memristor not only mimics the synapses in terms of being
plastic but also cancels the internal membrane resistance of
the neuron in some neuromorphic computation applications.

VI. CONCLUSIONS AND FUTURE WORK

This article focuses on new memristor physics that enables
brain-like functionality for neuromorphic computation and
memory (attributing to memristor’s 2-in-1 feature) with sig-
nificantly reduced power usage (attributing to memristor’s

FIG. 19. An electronic negative memristor in (a) exhibits experimentally the
negative memristance and the Delayed Switching effect in (b). The correspond-
ing v-i plot in (c) shows a pinched hysteresis loop as the fingerprint of memris-
tive devices. A 16-25 Hz square-wave input signal is used, the low resistance is
625Ω, and the high resistance is 10 kΩ.

FIG. 18. A neural network using a negative memristor (MN) to cancel the inter-
nal membrane resistance (RM) of the neuron in (b), in a similar way to cancel
the internal resistance of a voltage source by a negative resistor in (a). When
a neuron fires, it starts emitting a forward spike, +V/2, and a backward spike,
–V/2. The strengths of the memristive synapse can be modified (delayed switch-
ing) when these two spikes are overlapped. The synapse S1 is realized by a
simple linear resistor because the link between the “Sight” neuron and the
“Salivation” neuron exists by birth.
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passivity), while also enabling dense highly connected
networks (attributing to memristor’s simple structure and
small size).

The invention of memristor and its variants (ideal mem-
ristor, fractional memristor, mem-inductor, mem-capacitor,
negative memristor, etc.) opens a new way to unveil the
physics of the operations of the human brain and possibly of
many other adaptive and spontaneous behaviors/mecha-
nisms in living organisms. As a useful 3-in-1 physical model,
our developed flux-charge-interaction-based ideal Φ memris-
tor (Fig. 1), the complete differential conformal transformation
(Figs. 6 and 11), and the complete triangular periodic table of
elementary circuit elements (Fig. 7) cover all cases in this
article: α = 1 corresponds to a (positive) ideal Φ memristor
(Sec. II); −1 < α < 1 corresponds to a (positive/negative) frac-
tional memristor (Sec. III); the above classification also applies
to the mem-inductor/mem-capacitor families in their own
constitutive spaces (Sec. IV); α =−1 corresponds to a negative
(ideal) memristor (Sec. V). The first three elements are
passive, whereas the last one is active.

We hope to elaborate this 3-in-1 physics in a more coher-
ent way: The deduced Eq. (6) (and its approximations) for the
Φ memristor (the 1st component of the 3-in-1 physics) is used
as the basic flux-charge relationship in the complete con-
formal differential transformation (the 2nd component); the
generic formula for the fractional memristor (and its exten-
sions) deduced in the complete transformation (the 2nd
component) is used to label those fractional elements in the
complete triangular table of basic circuit elements (the 3rd
component).

Our memristor-based neuromorphic computation is tech-
nically positioned between the brain and the traditional com-
puter, as shown in Fig. 20. We are pushing it toward the brain
direction. (Brains are thought to be made of memristors.33) In
Fig. 20, the traditional Turing machine is represented as two
boxes: CPU and memory. Historically, such a separation of
computation and memory simplifies the machine design and

exceeds the natural human brain in terms of computational
performance. However, there are two sides to everything.
There are two negative side-effects: the communication over-
head between the two boxes (CPU and memory) and the
energy consumption that may be several orders of magnitude
larger. By nature, memristor (as well as its variants) is a 2-in-1
element combining both memory and computation functions.
The Adaptive Neuromorphic Architecture (ANA) in Sec. IV is a
remarkable example, in which a mem-inductor can not only
memorize the past history of the stimuli but also compute the
time constant (

ffiffiffiffiffiffi
LC

p
). That is why we see a small energy con-

sumption in the brain (it consumes only about the same
amount of electric power as a night light) in contrast to that of
the traditional architecture.

As a piece of work-in-progress in our labs, the Spin Hall
Memristive (SHM) effect is predicted based on a similar struc-
ture in Fig. 1: a piece of ferromagnetic conductor with two
terminals. The structure facilitating the predicted Spin Hall
Memristive (SHM) effect is a ferromagnetic conductor with
two terminals (Fig. 21). The electricity-magnetism interaction
is needed for an ideal memristor, as discussed in Sec. I. A fer-
romagnet is expected to provide a good source of nonlinear-
ity for the memristive effect from its rich hysteresis. The spin
Hall effect (SHE51–53) is expected to be a good source of spin
current. The induced spin current is expected to switch the
ferromagnet efficiently via Spin-Torque Transfer (STT).17,18

At this stage, its classic implementation (via Oersted’s
field) was experimentally studied and the most important
memristive mechanism was verified, as reported in Sec. II.
We think this is a new electro-magnetic effect with the clear
physical origin and great application potential in electron
devices. By our theory, the SHM effect should, at the nanoscale

FIG. 21. The Spin Hall Memristive (SHM) Effect. SHE (Spin Hall Effect) con-
verts an input (charge) current i flowing through the conductor to a spin current
winding around the cylindrical surface, like the lines of the magnetic field H pro-
duced by i. The boundary spin polarization changes sign when the direction of
the input charge current is reversed. The induced spin current can exert directly
torque via STT upon the magnetization M of the ferromagnet and switch it.
Consequently, the switched flux w induces a voltage v across the two terminals,
resulting in a changed (equivalent) memristance whose value is a function of
the history of i.

FIG. 20. Our memristor-based neuromorphic computation is technically posi-
tioned between the brain and the traditional computer. Brains are thought to be
made of memristors. By nature, memristor is a 2-in-1 element combining both
memory and computation functions.
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for its quantum implementation, be four orders of magnitude
larger than its classic implementation. The (equivalent) mag-
netic field generated by the spin current j via STT is expected
to play the same role as Oersted’s field to generate the mem-
ristive effect although the latter may be much smaller than the
former, especially when the Giant Spin Hall effect54,55 is used.

Searching for materials that suit all the 3 mechanisms
(namely, the electricity-magnetism interaction, SHE, and STT)
in the SHM effect may be challenging. As to SHE itself, it has
taken 33 years to observe the effect experimentally in the
gallium arsenide/indium gallium arsenide samples53 since the
SHE effect was predicted in 1971.51
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